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COMMENT 

Characteristic function and Spitzer’s law for the winding angle 
distribution of planar Brownian curves 

J Desbois 
Dibision d e  Ph)sique Theorique-,  lnsiitut d e  Physique Nucleaire, 91.106 Orsay Cedex,  
France 

Received S Februar! 1990 

Abstract. Using the analogy between Brownian motion and  quantum mechanics,  we study 
the winding angle 8 of planar Brownian curves around a given point,  say the origin 0. In 
particular, we compute the characteristic function for the probability distribution of 8 a n d  
recover Spitzer‘s law in the limit of infinitely large times. Finally, we study the ( large)  
change in the winding angle distribution when we a d d  a repulsive potential a t  the origin. 

Over several decades, topologically constrained Brownian curves have aroused a great 
interest among polymer physicists [ l ]  and  mathematicians [ 2 ] .  For example, a large 
amount of work has been devoted to the study of winding properties of such curves 
[ 1-51. In 1958, Spitzer [3] first calculated the asymptotic probability distribution for 
the winding angle 8 of a planar Brownian curve around any point, 0, different from 
the starting point. This result, in the limit of an infinitely large time T, can be written: 

This is a Cauchy law. In particular, it has an infinite variance, a property first deduced 
by Levy [4]. 

In [SI, Rudnick and  Hu  studied the influence of an  excluded region, of radius p ,  
enclosing the origin. In the limit of large times, they showed that P ( X ) ,  at large 1x1, 
is an  exponentially decreasing function of /XI  as long as p # 0. Thus, in that case, the 
variance is finite. More, they recovered Spitzer’s law when p + 0. 

In this comment we compute the characteristic function for the winding angle 
distribution. This is done by solving a quantum mechanical problem, the topological 
constraint leading to the presence of a vortex field at the origin. The corresponding 
probability distribution takes a very simple form in the limit 7 + +CC (Spitzer’s law). 
We also show that this distribution is fundamentally changed when we introduce a 
repulsive potential ( X r - ? )  at the origin. 

To begin, we shall consider the planar random walks starting at a fixed point r 
(polar coordinates ( r ,  4), r # 0) and ending after a time T at r ’ (  ( r ’ ,  4 + e),  r’ unspecified 
except for r‘ # 0,  (4  + 0 )  fixed). The probability to have a winding angle 0 around 0 
will be denoted P ( e ) .  A priori, it depends on the starting point r. However, we will 
see that this dependence is washed out when T+ +E. 
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In the Wiener integral representation, P( 8 )  reads: 
i i T l = r  

P ( 0 ) = N I T Z d r f [  F > 0  r i l l )=? [ar]s([:&(r)dt-8) exp(-h[:i2(t)dt)  

where N is a normalisation constant. 
Equation ( 2 )  calls for two remarks: 
(i) the measure is dr' ,  and not d2r',  the polar angle of r' being fixed; 
(ii) the lower bound is E > 0 because r ' f  0. However, we will see that taking E = 0 

More, we shall take I =  1 in the path integral (this choice of a unit length will not 

Using the identity 2 d ( x )  =IT: e iAy  dh, ( 2 )  becomes: 

causes no  trouble. 

affect our final result). 

according to standard textbooks [6]. 
The Hamiltonian H, appearing in (3), is written 

It describes a particle of unit charge moving in a vortex field localised at the origin 

Practically, it will be more convenient to use a harmonic well regulator and consider 
and carrying a flux 21rh. 

the Hamiltonian H,: 

H,  = H + i u z r z .  ( 5 )  

(We d o  not introduce a new notation for P ( 8 )  although we change the Hamiltonian. 
We shall compute this probability in the limit w + 0.) 

The energy levels of H ,  are given by: 

E M . p  = (IM - hl + 2 p  + 1)w (6) 

( M  and p integers, p 2 0), the corresponding normalised eigenfunctions being: 

where 

and Lb'-A'( wr') are Laguerre polynomials. Recall that [7]: 

In that context, (3) can be rewritten as: 
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which gives, taking into account ( 6 )  and ( 7 ) :  

with 

- - - ~ ( ~ t ) , . t I b - ~ l  e - w r " / ?  

(Ab,p is given by (8).) 

change in the normalisation factor, called now N' .  

ships [7]: 

Setting ( M  - A )  = U, we easily see that the summation over M only amounts to a 

Defining U'= Iul, X = wR', Y = e-2rw and using (8) and (9) and, also, the relation- 

we can write: 

Integrating F ( r ' )  over r' (with E = O ) ,  we are left with the expression: 

du etus e-rwu r' ( 2 w ) ' "  +lii2r( 7) T (  U') 
U'+ 1 +T 

P (  0 )  = N '  

(14) 
L 

(-xu)" a K  2 - ( u + l ) / 2  - ( 1 - Y )  Lo r ( u t + K  + i ) K !  aYK 

l / r ( u ' +  K + 1 )  can be expressed as (1 /2 i r )  jc e'v-' -K-' du. (In order to have an 
integrand that is monovalued, a cut is done, in the complex plane, along the negative 
real semi-axis; the contour C is any curve which begins at --03 under the cut, goes 
round the origin and ends at -a above the cut). In particular, we can choose the 
contour C such that it makes sense to write: 

Taking the limit w + 0 (and also, W T +  0, because the particle must only 'feel' the vortex 
field when the regulator progressively disappears) and integrating over U, we get a 
confluent hypergeometric function of the first kind F ( a ,  2 a ;  x )  with a = (U'+ 1)/2 and 
x = - r 2 / 2 7 .  We can express this function in terms of a modified Bessel function 
I U , , , ( - r 2 / 4 ~ )  and use the duplication formula for gamma functions [7]. Finally, 
collecting all the factors, we observe that the powers of w cancel. We are left with the 
following simple expression for the probability distribution, P (  e): 

P( 0 )  = 2r10( 1 r2 /4 . r )  - x  du e'u'I.;.($). (16) 
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Thus, the desired characteristic function is written 

(17) 

Equation (17) is the main result of our work and can be used. of course, to calculate 
P( e )  numerically. We also notice that (16) is close to the one obtained by Rudnick 
and  Hu  (equation (2.17) of [ 5 ] ) .  Our expression, however, is somewhat simpler. Now, 
we consider the limit of infinitely large times. 

Thinking of the expression of I ,  ( X )  at small X ,  we easily see that G( U )  is peaked 
at small U when the time T takes large values. Introducing the variable X = 2 8 / l n  T 

and taking the limit T +  +x, we can write: 

1 1  
A-- 

7T I t X 2  T - t X  

(In( r 2 / 8 )  << In T :  the dependence on the starting point disappears) 
We have recovered the Cauchy law first deduced by Spitzer. 
Now, we add  a repulsive potential at the origin and replace the Hamiltonian of 

( 4 )  by H+D2/2r’ (we shall consider D>O).  The energy levels ( 6 )  become 

E ;,,p = (.I( M - A )?  + D’ + 2 p  + 1 (19) 
and  more generally, all the previous reasoning remains valid if we replace U ’  by 

The new characteristic function is simply given by: 

and  the probability distribution P’( 0 )  can be written: 

In the limit of large T ,  we get: 
In 871  r’ D 2  

P‘( 8 ) = 
27T D( :) v’(; In 8 7 / r 2 ) ? +  e-  r -  

( K ,  is a modified Bessel function. When D -+ 0, K , ( D v - )  - 1/ D r ,  ( 2 2 )  gives back 
Spitzer’s law). 

Now, we consider the limit 1x1 -+ X. Using K ,  ( x  1 - e ‘/& when .x + +E, we easily 
see that 

for large X and T. So, the asymptotic distribution is vastly changed when we add  a 
repulsive potential (even if D is very small). 

In particular, it acquires a finite variance [5]: we can say that the short distance 
behaviour has been ‘regularised’ by the repulsive potential. We finally notice that, in 
contrast with [5], (23) depends on the quantity D characterising the repulsive potential. 
The probability distribution is, of course, determined by the concrete shape of the 
potential. The one we have used in the last part of this work is very simply tractable. 
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